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I, INTRODUCTION

The standard binomial sampling problem involves repeating an experiment
m times and counting the number of successes. If the random variable
representing the number of successes is X, then when we assume X has a
binomial distribution we are saying

- X

- oo m! X m
P{X}—P{X-x;— x(m -x) P 4
where q=1-p and x may take the values 0, 1, 2,...,m. Here P{X}

stands for the distribution function of X or the probability that X takes a
particular value., From the observed number of successes in m trials, we
are interested in obtaining an estimate of the unknown probability, p, assumed
to be constant from trial to trial, The well known answer to this estimation
problem is to estimate p by

~n S
p m

where s is the number of successes in m trials. This estimate has been
shown to have the desirable properties of unbiasedness, and minimum variance,
The binomial sampling problem discussed in this paper is different in that in
addition to estimating p, we also need an estimate of the number of trials.

II. THE PROBLEM

During . scarch we assume that there are a fixed but unknown number of
objects, m, available to be detected. We assume that the probability of
detecting on object is an unknown constant p. We repeat the search k times.
All objects detected in the first scarch are tagged in some manner so that
during the second search all new detections will be recognized and tagged. This
is repeated for all k searches. We record after each search only the new
detections made during that search. We then have k random variables

dj' j=1 2,..., k
where dj is the number of new detections made during the j-th search. We want
to estimate p and m from the observed values of d’.
Itl. RESULTS

The search problem given above describes sampling from a binomial
puwpulation. We casily see that the distributdon of dl is given oy

dl m-dl

E 3 m!
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The distribution of d2 given the value of d 1 is then seen to be

(m-dl)! d2 m-d, -d
_ )
P(dy]d)) U REr N G .

In general, then, the distribution of dj given the d,, d2’“'dj -1 s

P(d Id d d )= (m-dl-dz _ooo-dj_l)l dj m'dl-dz-o--'dj
j1% Q2o G §Tm - d -dz-...-d)lp 9
} 1 ) s (1)
From the above, it follows that the ioint density of all the dj’ j=l ...,k
the product of all the conditional densities giver above, is
- ! S k(m-S)+T -8
P(d ’ 9 ecey )_ L - = P q
p e &% I T -4, -4y @
wherc k
=
s« ) 4
y=1
k
T'Z jd’ .
y=1

The joint characteristic function of the d, is the expected value
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and is it 1
) . m! (pe 1>
; dlldzl...dk!(m -dl-dz-...-dk)l

172 "k <

d dk |

2 .
it i - _
X <pe 2:)...<pe tk) qk (m-85)+T-5 .

Performing the summations gives

o~

o~

it it i m
N 1 2 k-1 % ok :
'&(tl, tztoou’tk) -(pe +pqe +..o +pq e +q /\/ . (3)
Now the characteristic function of a binomial random variable defined by the
parameters N, P (N trials, P constant probability from trial to trial)

is o N
o(m =[Pt +Q | . 4

If in (3) we set all the t's equal to zero except tj' we see that
it, |
90, 0,000ty O, o.....0)=(p+pq+...+qu'2+qu'1e + |

5 1l m
) )\

. <m it,
pq’ +...+pa Q) =(pq° € +(1 - pq R

By analogy with (4) we then have that the distribution of the individual dj is |

A% _ym-d

By setting in (3) all the tj equal to t we find

- m
k-1 cit *qk\,

(v, l.....l)=/ ptpqt...tpq
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and so again by analogy with (4) we see that the distribution of $ = ¥ dj is given
2/ S m-S
__ m! k) (k)
Pn®) =31 (m - S)! (1 -q ) Qq J . (6)
From (2) we may find the maximum likelihood estimate of p by
differentiating log P(d 1 dgreees dk) with respect to p and finding the value

of p which makes this derivative equal to zero. This leads to

. S
B Km-5)+T - 7

Again starting with (2) it is possible to show that S is sufficient for m.
This follows from the fact that (2) may be rewritten as

P(dl....,dk)=P(S, m) P(xl, Xpseoer Xy _ l) (8) ”

m!

S m-S
s -9 (@) Pepan |

where
P(x ) = 8. p°
-0 XTIk D I8 %X ek ) - P
k-1
X g k- 1)s+jl_lq - g ‘

and P (S, m) is the same as Pm(S) defined in (6).

The first factor on the right side of (8) is a density as was already seen in
(6). The second factor is also a density as seen from




ZP("P" X P E ( - k>

k-1

o (k- 1)s+Z G-Kx,
X ) )L 3 S'xkl'(S-x-q-xk_l)'

X X X -1
\S k\S
=(Bg, (-, =1,
1-q q k-1

in which the sum on the left is taken over-all (xl, 50ag xk-l) such thatz xj =S .
=l
The second factor on the right in (8) comes from the transformation

x) =d,

applied to (2). The factorization in (8) means that S is sufficient for m. Now
we would like to have a function of S as an estimate of m which is unbiased and
unique. We want to use a result which says that if a function of a sufficient
s'atistic is both unbiased and unique, it is the best statistic for estimation in the
sense of having minimum variance. We propose as this function of S the quantity

(S) =3 9
where P = | -qk .

Now we want {(S) to be unbiased for all m. This means

E{r(S) J Zm, fordll m (10)

or

((S)P (S) = m for all m. (11)
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where P(S) is defined in (6).

We want to prove that f(S) given in (9) is unique. Suppose S = 0. We ke
m =0 and in (11) we have

0
Zf(O)Po(S) =0
$=0
or

f(0) =0
Suppose S=). Wetake m =1 andin (11) we have

1
Zt(S)Pl(S) =1,
$=0

Now 1(0) is already 0 and we find

f(l)Pl(l) =]

f(l)ﬁ!m—P'l
=3 .

Suppose S =2. We take m =2 and require

2
ZKS)Pz(S) =2
$=0

We already have f(0) =0, (1) -,!- . Hence we find

0. 145 . FrPQ+) . P =2

or

n2) =3 *




By induction 1t follows that
<
f(s) = :"3‘ ’

for suppose (9) 1s correct for S : r. We then have frem (1) for S=r ¢ 1
and taking m =r + |

| =

i . .
?P”l(~.fqr+1) Pr+l(r+l) r+!or

i~

1

&

(r+1)(1 'Pr)fl\r+l)Px*l=r+lnr

i+ )P s e+ 10 PF
and so
(r + 1) =—"§l

Hence ¢ estimate given in (9) is unique; since ir is sufficient and unbjased
It has minimun: varfance, We rewr'te (9) as

A2 (12)
l-q
This estimate of m (12), together with
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may be ~ " jiad simultaneously for fi and ﬁ
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